

Introduction > > Methodology > > Case history Introduction

- Monitor CO₂ reservoir fluid movement
- Fluid sensitivity asses with 3D models
- Workflow to upscale from borehole to surface
- Derived CO₂ resistivity from petrophysics
- Field examples, validation

2021 SPWLA FALL TOPICAL CONFERENCE - UNCONVENTIONAL PETROPHYSICS

Introduction > > Methodology > > Case history CO₂ fluid substitution - continued

Estimate formation temperature for each reservoir ${\cal R}_w$ calculated from Schlumberger chart of temperature & NaCl concentration Using the formula:

$$F = \frac{a}{\emptyset^m}$$

Where a = 1 & m = 2Then using

$$R_0 = F \times R_w$$

we determine the formation resistivity for the sandstone.

If shaly sand, the one can use

$$\frac{1}{R_t} = \frac{1 - V_{sh}}{R_0} + \frac{V_{sh}}{R_{sh}}$$

Formation resistivity was compared to average resistivity (Rh) from well data, values were consistent, validate selected a & m constants

2021 SPWLA FALL TOPICAL CONFERENCE – UNCONVENTIONAL PETROPHYSICS

8

Reservoir	Years of injection	Radius of injection area (m)	Ratio of increase of resistivity by saturation of CO ₂			Resistivity by saturation of CO_2 $R_h \& R_\nu \left(\Omega m \right)$			Brine saturated resistivity (Ωm)
			90 %	60 %	30 %	90 %	60 %	30 %	
Broom Creek (5,000 ft)	1	200	16.4	4.2	2.7	R _h : 22.46 R _v : 251.74	R _h : 5.75 R _v : 64.47	R _h : 3.69 R _v : 41.44	D (07
	5	500							R _h : 1.37 R _v : 15.35
	15	860							
Deadwood (9,000 ft)	1	150	7.5	2.3	1.5	R _h : 17.62 R _v : 186.75	R _h : 5.4 R _v : 57.27	R _h : 3.52 R _v : 37.35	R _h : 2.35 R _v : 24.9
	5	230							
	15	610							
Inyan* Kara (4,000 ft)	1	300	10	2.6	1.5	R _h : 57 R _v : 72.9	R _h : 14.82 R _v : 18.95	R _h : 8.55 R _v : 10.93	R _h : 5.7 R _v : 7.29
	5	660							
	15	1150							

2021 SPWLA FALL TOPICAL CONFERENCE - UNCONVENTIONAL PETROPHYSICS

Introduction > > Methodology > > Case history EM sensitivity & field data results

- EM sensitivity
 - Broom Creek Fm. (5,000 ft deep) detectable in 5% range
- Deadwood Fm. (9,000 ft deep) around 1%
- Inyan Kara Fm. (4,000 ft deep) > than 5 %
- CSEM signal > noise level to 4-6 s.
- 1D & 2D MT inversion
- CSEM inversion

12

2021 SPWLA FALL TOPICAL CONFERENCE – UNCONVENTIONAL PETROPHYSICS

Introduction >> Methodology >> Case history Conclusions EM monitors fluid movements CO₂ flooding provides resistivity contrast → EM anomaly CSEM preferred method MT & CSEM QA inversion results match anisotropic log model Upscaling workflow validated Future: CO₂ injection & time-lapse measurements

